PBIB DESIGNS FOR TWO SETS OF INBRED LINES

RANJIT SINGH and K. R. AGGARWAL Punjab Agricultural University, Ludhiana

(Received : April, 1984)

Summary

This paper deals with analysis and construction of partially balanced incomplete block (PBIB) designs with seven associate classes which can be used for confounded diallel experiments involving $v=2 p q$ crosses between two sets of inbred lines to obtain different amount of information on all the seven types of comparisons i.e. comparisons of general combining ability (g.c.a.) effects of the two sets, specific combining ability (s.c.a.) effects, residual reciprocal effects and F_{1}-crosses v / s reciprocal F_{1}-crosses.
Keywords : Diallel experiments; Fixed effect model; Mixed model; Orthogonal contrast.

Introduction

The concept of diallel crossing has been immensely useful in analysing genetical potential of a set of lines and in evaluating the best combination of crossing material in breeding programmes. Griffing [7] presented analyses for four diallel crossing schemes depending upon the inclusion of reciprocal crosses and/or parental lines using randomised complete block design (RBD). But for large number of inbred lines, the use of RBD may not be possible. So Kempthorne and Curnow [8] and Arya [6] gave circulant plans for partial diallel crosses. Raghavarao and Aggarwal [13]; Aggarwal [1], [2], [3] and [4]; Arya and Narain [5] and Narain and Arya [10] used PBIB designs for diallel experiments.

Robinson [14] offered analysis for crosses between two sets and within one set. Lin [9] presented RBD analysis for crosses between two sets of iines, coming from two different geographical/genetical back-grounds,
including parents. We are introducing PBIB designs, following a new association scheme, which are shown to be useful in analysing the combining abilities of two sets of lines. The often demand for different amount of information on different types of comparisons necessitated the introduction of the following 7-class association scheme.

Definition 1. Let $v=2 p q$ (for $p>1$ and $q>1$) treatments be denoted $i j$ and $j i(i=1,2, \ldots, p ; j=p+1, p+2, \ldots, p+q)$ and the treatment $j i$ be called the reciprocal of the treatment $i j$. For any treatment $i j$,
(i) all treatments $i j^{\prime}\left(j^{\prime} \neq j=p+1, p+2, \ldots, p+q\right)$ are first asssociates;
(ii) all treatments $j^{\prime} i$ are second associates;
(iii) all treatments $i^{\prime} j\left(i^{\prime} \neq i=1,2, \ldots, p\right)$ are third associates;
(iv) all treatments $j i^{\prime}$ are fourth associates;
(v) all treatments $i^{\prime} j^{\prime}$ are fifth associates;
(vi) all treatments $j^{\prime} i^{\prime}$ are sixth associates; and
(vii) the treatment $j i$ is seventh associate.

For any treatment $j i$, its k th ($k=1,2, \ldots, 7$) associates are reciprocals of k th associates of $i j$.

The parameters of this association scheme will be

$$
\begin{aligned}
& v=2 p q, n_{1}=n_{2}=q-1, n_{3}=n_{4}=p-1, n_{5}=n_{6} \\
&=(p-1)(q-1), n_{7}=1 ; \\
& p_{27}^{1}=p_{47}^{3}=p_{13}^{5}=p_{24}^{5}=p_{67}^{5}=p_{14}^{6}=p_{23}^{6}=1 ; \\
& p_{11}^{1}=p_{22}^{1}=p_{15}^{5}=p_{26}^{5}=p_{16}^{6}=q-2 ; \\
& p_{33}^{3}=p_{44}^{3}=p_{35}^{5}=p_{36}^{6}=p_{45}^{6}=p-2 ; \\
& p_{55}^{5}=p_{66}^{5}=(q-2)(p-2) ; \text { and }
\end{aligned}
$$

any other $p_{j k}^{\prime}(i, j, k=1,2, \ldots, 7)$ follows from either

$$
p_{j k}^{\prime}=p_{k j}^{l} \text { or } n_{i} p_{j k}^{\prime}=n_{j} p_{i k}^{J}
$$

otherwise it is zero.
Example : Let $p=3$ and $q=4$
For a treatment 14 (say) its ṣeven aṣsoc̣iatẹ classes arẹ :

Associate class		Treatments			
First	15	16	17		
Second	51	61	71		
Third	24	34			
Fourth	42	43		35	36
Fifth	25	26	27	35	37
Sixth	52	62	72	53	63
Seventh		41			

Definition 2. The association scheme given in definition 1 will be called 'Extended Right Angular' (ERA) association scheme. The PBIB design following the ERA association scheme will be called an 'Extended Right Angular (ERA) Design'.

Let N be the incidence matrix of an ERA design with the parameters $v=2 p q, b, r k, \lambda_{i}(i=1,2, \ldots, 7)$. The eigenvalues (θ_{i}) except $\theta_{0}=$ $r k$ of $N N^{\prime}$ with their multiplicities $\left(\alpha_{i}^{*}\right)(i=1,2, \ldots, 7)$ are given in Table 1. The non-zero eigen-values of the C-matrix of the ERA design will be $\phi_{i}=r-\left(\theta_{i / k}\right)$ with their multiplicities $\left(\alpha_{i}^{*}\right)(i=1,2, \ldots, 7)$. The ERA design will be connected if $\phi_{j} \neq 0$ or $\theta_{j} \neq r k$ or $\sum_{i=1}^{7} c_{i} \lambda_{i} \neq$ $r(k-1)$ for any $\theta_{j}(j=1,2, \ldots, 7)$ where c_{i} 's are coefficient of λ_{i} 's in θ_{j}. As $\sum_{i=1}^{7} n_{i} \lambda_{i}=r(k-1)$, therefore values of λ_{i} 's should be such that 7 $\sum_{i=1}\left(n_{i}-c_{i}\right) \lambda_{i} \neq 0$ for any $\theta_{j}(j=1,2, \ldots, 7)$.

For definitions of various breeding terms used, refer to Aggarwal [2] and for the definitions of various statistical terms and notations used refer to Raghavarao [12].

2. Confounded DialleI* Experiments

Let two sets of inbred lines represent two different geographical/genetical back-grounds. Let the first set contain p inbred lines and the second set contain q inbred lines. Let $2 p q$ crosses, involving F_{1}-crosses and reciprocal F_{1}-crosses between the two sets of inbred lines, be represented by $v=2 p q$ treatments of a connected ERA design with the parameters ν, $b, r, k, \lambda_{i}(i=1,2, \ldots, 7)$. Let the yield $\left(Y_{i j k}\right)$ of the $i j t h$ cross allotted to a plot in the k th block be given by

$$
Y_{i j_{k}}=m+g_{i}+g_{j}+s_{i j}+m_{i}+n_{i j}+\beta_{k}+e_{i j k} ; k=1,2, \ldots, b(1)
$$

* Confounded diallel here means that the partia set of crosses ($2 p q$) from diallel experiment with $(p+q)$ inbred lines is experimented with the concept of confounding explained by Raghavarao [9, p. 245].
where m is the general mean; g_{i} is the g.c.a. effect of the i th line and so is $g_{j}, s_{l j}$ is the s.c.a. effect of the $i j$ th cross, m_{i} is the maternal effect of i th line, $n_{i j}$ is the residual reciprocal effect due to $i j$ th cross and β_{k} is the effect of k th block. Let (1) be fixed effects model (Scheffe' 15, p. 6) with the restrictions

$$
\begin{aligned}
& \sum_{i=1}^{p} g_{i}=\sum_{j=p+1}^{p+q} g_{j}=0, s_{i j}=s_{j l}, \sum_{i=1}^{p} s_{i j}=\sum_{j=p+1}^{p+q} s_{i j}=0 \\
& m_{i}+n_{i j}=-\left(m_{j}+n_{j i}\right), \sum_{j=p+1}^{p+q} n_{i j}=\sum_{i=1}^{p} n_{j i}=0 \text { and } \sum_{k=1}^{b} \beta_{k}=0 .
\end{aligned}
$$

$e_{i j k}$'s are assumed to be independently and normally distributed with means zero and variance σ^{2}.

Considering the sum $g_{i}+g_{j}+s_{i j}+m_{i}+n_{i j}$ in (1) as the split of the true effect ($\alpha_{i j}$) of the $i j$ th cross, we can obtain the reduced normal equations

$$
\begin{equation*}
C \underline{\hat{\alpha}}=\underline{Q} \tag{2}
\end{equation*}
$$

The orthonormal eigen-vectors $\underline{x}_{i k}$'s, $\underline{y}_{i k}$'s, $\underline{w}_{n k}$'s, $\underline{z}_{n k}$'s and \underline{x} corresponding to non-zero eigen-values ($\overline{\phi_{i}}$) of the C-matrix of the ERA design represent various types of orthonormalized contrasts given in Table 1. These orthonormal eigen-vectors and eigen-values provide a solution of the reduced normal equations (Raghavarao [11]) which helps in computing the ANOVA TABLE (Table 2). For testing the significance of any effect its mean square (M.S.) is tested against the error M.S.

From the least square estimates ($\hat{\alpha}_{i j}$) of the true effects of the crosses, the least square estimates of various parameters, their variances and variances of their elementary contrasts can be worked out and are given below :

$$
\begin{aligned}
\hat{g}_{i} & =\left(Q_{i .}+Q_{\cdot i}\right) / 2 q \phi_{1} ; \\
\hat{g_{j}} & =\left(Q_{\cdot}+Q_{\cdot j}\right) / 2 p \phi_{3} ; \\
\hat{m_{i}} & =\left(Q_{i .}-Q_{\cdot i}\right) / 2 q \phi_{2}+\left(1 / \phi_{7}-1 / \phi_{2}\right) \Delta_{1}^{Q} / p q ; \\
\hat{m_{j}} & =\left(Q_{i .}-Q_{\cdot j}\right) / 2 p \phi_{4}+\left(1 / \phi_{4}-1 / \phi_{7}\right) \Delta_{1}^{Q} / p q ; \\
\hat{s}_{i j} & =\left[Q_{i j}+Q_{j i}-\left(Q_{i .}+Q_{\cdot i}\right) / q-\left(Q_{j .}+Q_{\cdot j}\right) / p\right] / 2 \phi_{6} ; \\
\hat{n}_{i j} & =\left(Q_{i j}-Q_{i t}\right) / 2 \phi_{6}-\left(Q_{i \cdot}-Q_{\cdot i} / 2 q \phi_{6}+\left(1 / \phi_{6}\right.\right. \\
& \left.\quad-1 / \phi_{4}\right)\left(Q_{j .}-Q_{\cdot j}\right) / 2 p+\left(1 / \phi_{6}-1 / \phi_{4}\right) \Delta_{1}^{Q} / p q \\
V\left(\hat{g}_{i}\right) & =(p-1) \sigma^{2} / 2 p q \phi_{1} ;
\end{aligned}
$$

$$
\begin{aligned}
& \nu(\hat{g})=(q-1) \sigma^{2} / 2 p q \phi_{3} ; \\
& \nu\left(\hat{m_{1}}\right)=\left[(p-1) / \phi_{2}+1 / \phi_{7}\right] \sigma^{2} / 2 p q ; \\
& v\left(\hat{m}_{3}\right)=\left[(q-1) / \phi_{4}+1 / \phi_{7}\right] \sigma^{\mathbf{2}} / 2 p q ; \\
& v\left(s_{i j}\right)=(p-1)(q-1) \sigma^{2} / 2 p q \phi_{5} ; \\
& v\left(\hat{n}_{i j}\right)=\left[(p-1) / \phi_{6}+1 / \phi_{4}\right](q-1) \sigma^{2} / 2 p q ; \\
& v\left(\hat{g_{i}}-\hat{g_{i}^{\prime}}\right)=\sigma^{2} / q \phi_{1} ; \\
& v\left(\hat{g}_{j}-\hat{g}_{j^{\prime}}\right)=\sigma^{2} / p \phi_{3} ; \\
& v\left(\hat{m_{i}}-\hat{m_{i}^{\prime}}\right)=\sigma^{2} / q \phi_{2} ; \\
& \nu\left(\hat{m}_{j}-\hat{m}_{j}^{\prime}\right)=\sigma^{2} / p \phi_{4} ; \\
& v\left(\hat{s_{i j}}-\hat{s_{i \prime}}\right)=(p-1) \sigma^{2} / p \phi_{5} ; \\
& v\left(\hat{s_{i j}}-\hat{s_{i j}}\right)=(q-1) \sigma^{2} / q \phi_{\dot{5}} ; \\
& v\left(\hat{s_{i j}}-\hat{s}_{i_{i j}}\right)=(p q-p-q) \sigma^{2} / p q \phi_{5} ; \\
& v\left(\hat{n}_{i j}-\hat{n}_{(j i j}\right)=\left[(p-1) / \phi_{6}+1 / \phi_{\mathrm{d}}\right] \sigma^{2} / p ; \\
& v\left(\hat{n}_{i j}-\hat{n}_{i, j}\right)=(q-1) \sigma^{2} / q \phi_{G} ; \text { and } \\
& \nu\left(\hat{n}_{i j}-\hat{n}_{i, j}\right)=\left[(p q-p-q) \phi_{G}+q / \phi_{4}\right] r^{2} / p q, i \neq i^{\prime}=1,2, \ldots, p ; \\
& j \neq j^{\prime}=p+1, \ldots, p+q .
\end{aligned}
$$

3. Mixed Model

Let m and β_{k} 's in equation (1) be fixed effects and g_{i} 's, g_{j} 's, $s_{i j}$'s, m_{i} 's, $n_{i j}$'s, m 's, $n_{j i}$'s and $e_{i / j}$'s be independently and normally distributed with mean zero, variances $\sigma_{0_{1}}^{2}, \sigma_{\sigma_{2}}^{2}, \sigma^{2}, \sigma_{m_{1}}^{2}, \sigma_{n}^{2}, \sigma_{m_{2}}^{2}, \sigma_{n}^{2}$ and σ^{2}, respectively and pairwise uncorrelated. Under these rerstrictions, the expectations of various mean squares are given in the Table 2. The usual test procedure is followed for testing the significance and estimation of the variance components $\sigma_{{q_{1}}_{1}}^{2}, \sigma_{g_{2}}^{2}, \sigma_{s}^{2}, \sigma_{m_{1}}^{2}, \sigma_{m_{2}}^{2}$ and σ_{n}^{2}.

4. Methods of Constructing ERA Designs

Theorem 1. If $q=p$ is a prime or a prime power then a series of ERA designs with the parameters

$$
\begin{align*}
& v=2 p^{2}, b \\
&=p(p-1), r=(p-1), k=2 p, \lambda_{1}=\lambda_{2}=\lambda_{3} \tag{3}\\
&=0, \\
& \lambda_{5}=\lambda_{6}=1, \lambda_{7}=(p-1), \text { can always be constructed. }
\end{align*}
$$

TABLE 1-SETS OF ORTHONORMALIZED CONTRASTS

Sr. No.	roots of NN^{\prime}	multiplicities	contrasts remer	effects represented
1.	$\begin{aligned} \theta_{1}= & +\lambda_{7}+(q-1)\left(\lambda_{1}\right. \\ & \left.+\lambda_{2}-\lambda_{5}-y_{6}\right) \\ & -\left(\lambda_{2}+\lambda_{4}\right) \end{aligned}$	$\alpha_{1}^{*}=(p-1)$	$\begin{aligned} \underline{\alpha}^{\prime} \underline{x}_{1 k}= & {\left[\begin{array}{c} k \\ i=1 \\ \\ \vdots \end{array}\left(\alpha_{i}+\alpha_{\cdot i}\right)-k\left(\alpha_{(k+1)}+\alpha_{\cdot(k+1)}\right)\right.} \\ & \div[2 q k(k+1)]^{1 / 2}, k=1,2, \ldots, p-1 \end{aligned}$	g.c.a. effects of first set
2.	$\begin{aligned} \theta_{2}= & r-\lambda_{7}+(q-1)\left(\lambda_{1}\right. \\ & \left.\left.-\lambda_{2}-\lambda_{5}\right)+\lambda_{6}\right) \\ & -\left(\lambda_{3}-\lambda_{4}\right) \end{aligned}$	$\alpha_{2}^{*}=(p-1)$	$\begin{aligned} \underline{\alpha}^{\prime} \underline{y}_{1 k}= & {\left[\begin{array}{c} k \\ \sum_{i=1}\left(\alpha_{i .}-\alpha_{\cdot i}\right)-k\left(\alpha_{(k+1) .}-\alpha_{.(k+1)}\right) \end{array}\right] } \\ & \div[2 q k(k+1)]^{1 / 2}, k=1, \ldots, p-1 ; \end{aligned}$	maternal effects of the first set
3.	$\begin{aligned} \theta_{3}=r & +\lambda_{7}-\left(\lambda_{1}+\lambda_{2}\right) \\ & +(p-1)\left(\lambda_{3}+\lambda_{4}\right. \\ & \left.-\lambda_{5}-\lambda_{6}\right) \end{aligned}$	$\alpha_{3}^{*}=(q-1)$	$\begin{aligned} \stackrel{\alpha}{\prime}^{\prime} \underline{x}_{2 k}= & {\left[\begin{array}{l} p+k \\ \sum_{j=p+1} \end{array}\left(\alpha_{j_{0}}+\alpha_{\cdot j}\right)-k\left(\alpha_{(p+k+1}\right)\right.} \\ & +\alpha \cdot(p+k+1) \\ & \div[2 p k(k+1)]^{1 / 2}, k=1,2, \ldots, q-1 \end{aligned}$	g.c.a effects of the second set
4.	$\begin{aligned} \theta_{4}= & r-\lambda_{7}-\left(\lambda_{1}-\lambda_{2}\right) \\ & +(p-1)\left(\lambda_{3}-\lambda_{4}\right. \\ & \left.-\lambda_{5}+\lambda_{6}\right) \end{aligned}$	$\alpha_{4}^{*}=(q-1)$	$\begin{aligned} \underline{\alpha}^{\prime} \underline{y}_{2 k}= & {\left[\begin{array}{c} p+k \\ j=p+1 \end{array}\left(\alpha_{j .}-\alpha_{\cdot j}\right)-k\left(\alpha_{(p+k+1)}\right.\right.} \\ & \quad-\alpha_{\cdot}(p+k+(1)] \\ & \div[2 p k(k+1)]^{1 / 2}, k=1,2, \ldots, q-1 ; \end{aligned}$	maternal effects of the second set
5.	$\begin{aligned} \theta_{5} & =r+\lambda_{7}-\left(\lambda_{1}+\lambda_{8}\right) \\ & -\left(\lambda_{2}+\lambda_{9}\right)+\left(\lambda_{5}+\lambda_{6}\right) \end{aligned}$	$\alpha_{5}^{*}=(p-1)$	$\begin{aligned} & \underline{\alpha}^{\prime} \underline{z}_{n h}= {\left[\sum _ { i = 1 } ^ { n } \left\{\begin{array}{c} p+k \\ \sum \\ j=p+1 \end{array}\left(\alpha_{i j}+\alpha_{j i}\right)-k\left(\alpha_{i(p+k+1)}\right.\right.\right.} \\ &\left.\left.+\alpha_{(p+k+1) i}\right)\right\}-n\left\{\begin{array}{c} p+k \\ \sum=p+1 \end{array}\left(\alpha_{(n+1) j}+\alpha_{j(n+1)}\right)\right. \\ &\left.\left.-k\left(\alpha_{(n+1)}(p+k+1)+\alpha_{(p+k+1)(n+1)}\right)\right\}\right] \\ & \div[2 n(n+1) k(k+1)]^{1 / 2}, n=1,2, \ldots, p-1 \\ & k=1,2, \ldots, q-1 \end{aligned}$	s. c. a. effects $\begin{aligned} & 1 \\ & 1 ; \end{aligned}$

$$
\begin{aligned}
& \text { 6. } \quad \begin{aligned}
\theta_{6} & =r-\lambda_{7}-\left(\lambda_{1}-\lambda_{2}\right) \\
& -\left(\lambda_{3}-\lambda_{4}\right)+\left(\lambda_{5}-\lambda_{6}\right)
\end{aligned} \\
& \alpha_{6}^{*}=(p-1) \quad \underline{\alpha}^{\prime} \underline{w}_{n k}=\left[\begin{array} { c }
{ n } \\
{ (q - 1) } \\
{ i = 1 }
\end{array} \left\{\begin{array}{c}
p+k \\
\sum=p+1
\end{array}\left(\alpha_{i j}-\alpha_{j i}\right)-k\left(\alpha_{i(p+k+1)}\right.\right.\right. \\
& \left.\left.-\alpha_{(p+k+1) t}\right)\right\} n\left\{\begin{array} { c }
{ p + k } \\
{ \sum _ { j = p + 1 } }
\end{array} \left(\alpha_{(n+1) j}\right.\right. \\
& \left.-\alpha_{j(n+1)}\right)-k\left(\alpha_{(n+1)(p+k+1)}\right. \\
& \left.\left.-\alpha_{(p+k+1)(n+1)}\right\}\right] \\
& \div[2 n(n+1) k(k+1)]^{1 / 2} \\
& n=1,2, \ldots, p-1 ; \\
& k=1,2, \ldots, q-1 ; \\
& \text { 7. } \quad \theta_{7}=r-\lambda_{7}+(q-1)\left(\lambda_{1}\right. \\
& \alpha_{7}^{*}=1 \\
& \underline{\alpha}^{\prime} \underline{x}=\left[\Delta_{1}^{\alpha}-\Delta_{2}^{\alpha}\right]+(2 p q)^{1 / \mathbf{n}} \\
& \left.-\lambda_{2}\right)+(p-1)\left(\lambda_{8}\right. \\
& \left.-\lambda_{1}\right)+(p-1)(q \\
& -1)\left(\lambda_{5}-\lambda_{6}\right) \\
& \text { residual } \\
& \text { reciprocal } \\
& \text { effects } \\
& F_{1} \text { crosses } \mathrm{v} / \mathrm{s} \\
& \text { reciprocal } \\
& F_{1} \text { - crosses }
\end{aligned}
$$

Source	d.f.	S. S.	$E(M . S$.$) Mixed-effects$ Model
Blocks ignoring treatments	$(b-1)$	$\sum_{i=1}^{b}\left(y^{2} \ldots 1\right) / k-y^{2} \ldots / r v$	-
g.c.a. effects of the first set	($p-1$)	$\left[\sum_{i=1}^{p}\left(Q_{i .}+Q_{i}\right)^{2}\right] / 2 q \phi_{1}$	$\sigma^{2}+2 \phi_{l}\left[\sigma_{s}^{2}+q \sigma_{g_{1}}^{2}\right]$
maternal effects of the first set	$(p-1)$	$\left[\sum_{i=1}^{p}\left(Q_{i .}-Q . i\right)^{2}-\left(2 \Delta_{1}^{Q}\right)^{8} / p\right] / 2 q \phi_{2}$	$\sigma^{2}+2 \phi_{2}\left[\sigma_{n}^{2}+q \sigma_{m_{\mathbf{1}}}^{2}\right]$
:g.c a. effects of the second set	$(q-1)$	$\left[\begin{array}{c}p+q \\ j=p+1\end{array} \chi_{j}\left(Q_{j}+Q_{. j}\right)^{2}\right] / 2 p \phi_{2}$	$\sigma^{2}+2 \phi_{3}\left[\sigma_{s}^{2}+p \sigma_{\nu_{3}}^{2}\right]$
maternal effects of the second set	$(q-1)$	$\left[\begin{array}{c}p+q \\ \sum=p+1\end{array}\left(Q_{j}-Q_{\cdot j}\right)^{2}-\left(2 \Delta_{\Sigma}^{Q}\right)^{\mathbf{1}} / q\right] / 2 p_{\phi_{4}}$	$\sigma^{2}+2 \phi_{4}\left[\sigma_{n}^{2}+p \sigma_{m_{\mathbf{z}}}^{2}\right]$
s.c.a. effects	$(p-1)(q-1)$	$\left[\sum_{i=1}^{p} \sum_{j=p+1}^{p+q}\left(Q_{i j}+Q_{j i}\right)^{2}-\sum_{i=1}^{p}\left(Q_{i .}+Q_{\cdot i}\right)^{\mathbf{2} / q}\right.$	$\sigma^{2}+2 \phi_{5} \sigma_{s}^{2}$
		$\left.-\underset{j=p+1}{p+q}\left(Q_{j .}+Q_{. j}\right)^{2} / p\right] / 2 \phi_{5}$	

Proof. Put p^{2} crosses in a $p \times p$ square array such that i th row ($i=1,2 \ldots, p$) contains crosses $i \times j(j=p+1, \ldots, 2 p)$ and the j th column $(j=1,2, \ldots, p)$ contains crosses $i \times(p+j)(i=1,2$, \ldots, p). Superimpose each of the ($p-1$) MOLS on this square array. Putting all the crosses which occur with the same letter of a latin square in a block, we can get p blocks with each latin square. Thus ($p-1$) MOLS give $p(p-1)$ blocks. Doubling the block size by adding the cross $j \times i$ for each cross $i \times j(i=1,2, \ldots, p ; j=p+1, \ldots, 2 p)$ in these blocks, a series of ERA designs with the parameters given in (3) can be obtained.

Theorem 2. A Series of ERA designs with the parameters

$$
\begin{align*}
v=2 p q, b & =b^{*}, r=\lambda_{1}=\lambda_{2}=\lambda_{7}=r^{*}, k=2 q k^{*}, \lambda_{3}=\lambda_{4} \\
& =\lambda_{5}=\lambda_{6}=\lambda^{*} \tag{4}
\end{align*}
$$

where $v^{*}=p, b^{*}, r^{*}, k^{*}, \lambda^{*}$ are the parameters of a BIB design, can always be constructed.

Proof. Construct p groups of $2 p q$ crosses such that i th ($i=1,2$, $\ldots, p)$ group contains crosses $i \times j, j \times i(j=p+1, \ldots, p+q)$. Define a one-one correspondence between these p groups and the p treatments of a BIB design with the parameters $v^{*}=p, b^{*}, r^{*}, k^{*}, \lambda^{*}$. Replace each treatment of the BIB design by all the crosses in the corresponding group. Thus we get a series of ERA designs with the parameters given in (4).

For the series of ERA designs given in (3), the relative loss of information (Shah [16]) is only on d.f. pertaining to s.c.a. effects and that is $1 /(p-1)$ for each d.f. For the series of ERA designs given in (4), the relative loss of information is only on d.f. pertaining to g.c.a. effects of the first set and that is $\left(r^{*}-\lambda^{*}\right) / r^{*} k^{*}$ for each d.f.

5. Worked Example

Let $v=24($ for $p=3$ and $q=4), b=6, r=3, k=12$,
$\lambda_{1}=\lambda_{2}=\lambda_{6}=\lambda_{6}=1$ and $\lambda_{3}=\lambda_{6}=\lambda_{7}=3$ be the parameters of an ERA design. The yields of the crosses $i \times j, j \times i(i=1,2, \ldots, p ;$ $j=p+1, p+2, \ldots, p+q$) are given within brackets in the following 6 blocks.
$\left[\begin{array}{ccccccccccccc}1 \times 4 & 2 \times 4 & 3 \times 4 & 4 \times 1 & 4 \times 2 & 4 \times 3 & 1 \times 5 & 2 \times 5 & 3 \times 5 & 5 \times 1 & 5 \times 2 & 5 \times 3 \\ (11) & (1) & (3) & (5) & (8) & \text { (10) } & (9) & (5) & (5) & (8) & (2) & (2)\end{array}\right]$

$\left[\begin{array}{cccccccccccc}1 \times 5 & 2 \times 5 & 3 \times 5 & 5 \times 1 & 5 \times 2 & 5 \times 3 & 1 \times 6 & 2 \times 6 & 3 \times 6 & 6 \times 1 & 6 \times 2 & 6 \times 3 \\ (8) & (2) & (5) & (1) & (11) & \text { (6) } & (10) & \text { (4) } & \text { (1) } & (3) & (6) & (12)\end{array}\right]$
$\left[\begin{array}{ccccccccccccc}1 \times 5 & 2 \times 5 & 3 \times 5 & 5 \times 1 & 5 \times 2 & 5 \times 3 & 1 \times 7 & 2 \times 7 & 3 \times 7 & 7 \times 1 & 7 \times 2 & 7 \times 3 \\ (10) & (3) & (6) & (7) & (4) & (2) & (5) & (1) & (11) & (9) & (7) & (12)\end{array}\right]$
$\left[\begin{array}{cccccccccccc}1 \times 6 & 2 \times 6 & 3 \times 6 & 6 \times 1 & 6 \times 2 & 6 \times 3 \times 3 & 1 \times 7 & 2 \times 7 & 3 \times 7 & 7 \times 1 & 7 \times 2 & 7 \times 3 \\ (13) & (5) & (3) & (1) & (15) & (2) & \text { (4) } & (6) & (5) & (8) & (9) & (7)\end{array}\right]$
The roots ϕ_{6} of the C-matrix will be $\phi_{1}=\phi_{2}=\phi_{4}=\phi_{5}=\phi_{6}=$ $\phi_{7}=3$ and $\phi_{a}=2$. The values of Q_{4} 's are given in Table (3). Assum-

TABLE 3-CALCULATION OF $Q_{i j}$'s

Cross $(i \times j)$	$T_{i j}$	$B^{6 j / 12}$	$Q_{i f}$	Cross $(j \times i)$	$T_{f i}$	$B^{j i / 12}$	$Q_{i 1}$
1×4	27	18.08	8.92	4×1	17	18.08	-1.08
1×5	27	17.92	9.08	4×2	21	18.08	2.92
1×6	21	18.08	2.92	4×3	25	18.08	6.92
1×7	20	19.42	0.58	5×1	16	17.92	-1.92
2×4	6	18.08	-12.08	5×2	17	17.92	-0.92
2×5	10	17.92	-7.92	5×3	10	17.92	-7.92
2×6	11	18.08	-7.08	6×1	13	18.08	-5.08
2×7	14	19.42	-5.42	6×2	32	18.08	13.92
3×4	14	18.08	-4.08	6×3	23	18.08	4.92
3×5	16	17.92	-1.92	7×1	20	19.42	0.58
3×6	15	18.08	-3.08	7×2	18	19.42	-1.42
3×7	24	19.42	4.58	7×3	24	19.42	4.58

ing various effects to be fixed, the anova table for testing various effects is given in Table (4). From the anova table, it can be observed that only the maternal effects of set 1 are significant at 5 per cent level. The least square estimates of m_{1}, m_{2} and m_{3} are $1.21,-1.96$ and -0.54 , respectively and estimate of SE ($\left.\hat{m}_{i}-\hat{m}_{i^{\prime}}\right)$ is $1.04, i \neq i^{\prime}=1,2$, 3. where $T_{i j}$ is the total of all observations from plots to which $i \times j$ is allotted, $B^{i j}$ is the total of all blocks in which $i \times j$ occurs and the adjusted cross total $Q_{i j}=T_{i j}-B^{d j} / k$.

TABLE 4-ANOVA

Source	$d . f$.	$S . S$.	$M . S$.	F-ratio
blocks ignoring treatment	5	8.79	-	-
g c.a. effects	Set 1	2	22.33	11.17
maternal effects		2	120.78	60.39
g.c.a. effects maternal effects Set 2	3	15.80	5.27	0.86
s. c. a. effects	3	31.82	10.61	0.81
residual reciprocal effects	6	61.57	10.26	0.79
F_{1}-crosses v/s reciprocal	6	40.22	6.70	0.51
F_{1}-crosses	1	13.35	13.35	1.02
Error	43	561.21	13.05	-
Total	71	875.87	-	-

ACKNOWLEDGEMENTS

The authors are highly grateful to the referees for their valuable suggestions for improving the substance of the paper.

REFERENCES

[1] Aggarwal, K. R. (1974) : Analysis of $L_{i}(s)$ and triangular designs, J. Ind. Soc. Agri. Statist., $26: 3-13$.
[2] Aggarwal, K. R. (1974) : DT and MDT designs and their applications as breeding experiments, Canadian Journal of Statistics, $2: 61-74$.
[3] Aggarwal, K. R. (1975) : Some aspects on diallel analysis involving maternal and maternal interaction effects, Journal of Research, 12:161-166.
[4] Aggarwal, K. R. (1976) : Confounded diallel experiments-II, J. Ind. Soc. Agri. Statist, 28 : 65-74.
[5] Arya, A. S. and Narain, P. (1977) : Partial diallel crosses based on some association schemes with three or four associate classes, Sankhya B, 39:394-399.
[6] Arya, A. S. (1983) : Circulant plans for partial diallel crosses, Biometrics, 39 : 43-52.
[7] Griffing, B. (1956) : Concept of general and specific combining ability in relation to diallel crossing systems, Aust. J. Biol. Sci., $9: 463-493$.
[8] Kempthorne, O. and Curnow, R. N. (1961) : The partial diallel crosses, Biometrics, 17 : 229-250.
[9] Lin, C. S. (1972) : Analysis of diallel crosses between two groups where parental lines are included, Biometrics, 28 : 612-618.
[10] Narain, P. and Arya, A. S. (1981): Truncated triangular Association scheme and related partial diallel crosses, Sankhya B, 43 : 93-103.
[11] Raghavarao, D. (1962) : On the use of latent vectors in the analysis of group divisible and $L_{2}(s)$ designs, J. Ind. Soc. Agr. Statist., 14 : 138-144.
[12] Raghavarao, D. (1971) : Constructions and Combinatorial Problems in Deslgn of Experiments, Wiley, New York.
[13] Raghavarao, D. and Aggarwal, K. R. (1974) : Some new series of PBIB designs and their applications, Ann. Inst. Statist. Math., 26 : 153-161.
[14] Robinson, P. (1965) : The analysis of diallel crossing experiment with certain crosses missing, Biometrics, 21 : 216-219.
[15] Scheffe', H. (1959) : The Analysis of Variance, Wiley, New York.
[16] Shah, B. V. (1958) : On balancing in factorial experiments, Ann. Math. Statist., 29:766-779.

